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1 SUMMARY 

Spacecraft inertial navigation, or the means by which an active spacecraft determines its 
ephemeris, is the foundation for most space missions [1].  For inactive or non-cooperative space 
objects, the same task can be performed, but in this case it must be done by passive means, and is 
often termed orbit determination [2].  These tasks, based on the physics of inertial orbital motion, 
each have an analog in the realm of relative orbital motion.  In the case of navigation, a spacecraft 
can estimate its ephemeris (or improve its current estimate of its ephemeris) based on 
measurements between itself and a reference object whose orbit is accurately known [3-5].  In the 
case of orbit determination, a spacecraft whose own orbit is accurately known can estimate the 
ephemeris of an unknown object based on measurements between itself and that object [6-7]. 
Mathematically, these two tasks are essentially the same; in both cases, measurements between the 
spacecraft and a Resident Space Object (RSO) are processed to estimate the relative trajectory 
between the two objects.  This research effort analyzes the processing of optical (angle or line-of-
sight) sensor data from an active spacecraft to estimate just such a relative trajectory.  Various 
mission scenarios are investigated, to include both close-proximity scenarios (when the spacecraft 
images a nearby RSO) and long-range scenarios (when the spacecraft images other RSOs).  The 
methods detailed herein are meant to generate an initial guess of the relative orbit and can be 
considered deterministic in nature; i.e. the methods assume no modeling error (the relative 
dynamics on which the methods are based are assumed exact) and no measurement error (the 
measurements obtained are assumed exact). Therefore, the general term to be used for these 
methods is Initial Relative Orbit Determination (IROD).  The IROD solution can serve as an initial 
guess or starter solution for a statistical (e.g. batch least-squares or Extended Kalman Filter) 
estimator.  In addition, the IROD approach can be applied to classical (ground-based) tracking. 
Scenarios involving ground sensor data of either the spacecraft or the RSO will be explored.  This 
document contains the following sections: a general description of IROD theory is given, followed 
by a detailed description of the various IROD techniques developed (with an input-output 
description of the data flow), delineation of each scenario, results, and conclusions. 
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2 INTRODUCTION 

It is well-known that when trying to determine an object’s orbit using strictly optical measurements 
(“angles-only”), observability can be an issue.  Generally speaking, an orbit determination scenario 
is observable if the object’s orbit can be uniquely determined from the given measurements. 
Unobservability implies ambiguity, i.e. there exist more than one orbit that fitS the given 
measurements.  This is most easily demonstrated in a relative orbit determination scenario [8], 
where both the observer and RSO are orbiting the Earth.  Suppose we model the relative motion 
between the observer and RSO in a Cartesian coordinate frame.  The logical frame then to employ 
is the Local-vertical-local-horizontal (LVLH) frame.  This frame entails defining a reference orbit 
about the Earth, defining a “chief” object on this orbit, and attaching a coordinate frame to the 
chief’s center of mass.  This is depicted in Figure 1.  Note that the LVLH frame is not predicated 
on the existence of two space objects, or even one for that matter, as the chief and its orbit can be 
fabricated.  The frame is also not predicated on the chief orbit having any particular eccentricity 
(though for most practical applications, this orbit should be closed, i.e. e < 1).  The LVLH 
coordinate directions are then defined as follows: the “x” or radial direction is aligned with the 
chief’s inertial position vector (i.e. the vector from Earth’s center to the chief), the “z” or cross-
track direction is aligned with the chief’s angular momentum vector (i.e. perpendicular to the 
chief’s orbit plane), and the “y” direction is the cross product of z and x.  (If the chief orbit is 
circular, the “y” direction is then aligned with the chief’s inertial velocity vector and is often called 
along-track.)  Note that the LVLH frame translates and rotates around the Earth with the chief 
object, therefore these directions are defined instantaneously. 

Figure 1. LVLH Coordinate Frame, with X and Y Axis 
Directions Depicted and Z Going into the page.   

Note on Figure 1:  Orbital Motion is Clockwise and R  Denotes 
Chief’s Inertial Position Vector 
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If we choose the observer to be the chief, then the state vector  tx  consists of the relative position 

and velocity of the RSO expressed in LVLH coordinates:  Tzyxzyxx  .  Suppose the motion

of the RSO relative to the reference orbit is described by linear dynamics, i.e. 

    00, xtttx  (1) 

where  tx  represents the values of the states at any time t, 0x  is a 6x1 vector represents the values

of the states at the initial time t0, and (t,t0) is the 6 x 6 state transition matrix representing the 
linear dynamics of the motion.  Two common choices for the state transition matrix are that derived 
from the Tschauner-Hempel solution [11] or that derived from the Clohessy-Wiltshire solution 
[12].  Both solutions assume the space objects are subject only to two-body (Keplerian) gravity 
force, with the Clohessy-Wiltshire solution containing the added assumption that the chief’s orbit 
is circular. 

Let us represent  tx  as 

   
 








tv

tr
tx (2) 

The instantaneous Line-of-sight (LOS) from observer to RSO is the unit vector along the relative 
position vector: 

   
 tr

tr
tur ˆ (3) 

The instantaneous relative position vector is related to the relative position vector at t0 by 
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       000 ,, xtttttr rvrr  (4) 

where rr(t0,t) and rv(t0,t) are the upper left and upper right submatrices of (t0,t) , respectively. 
Inserting Equation (4) into Equation (3) yields 

      
     000

000

,,

,,
ˆ

xtttt

xtttt
tu

rvrr

rvrr
r 


 (5) 

Consider two trajectories, one whose values at t0 are given by 01x  and the other whose initial values

are 0102 xx  , where  is a positive real number.  At any given time t, the line-of-sight vector to

an RSO on the first trajectory is 

      
     0100

0100
1 ,,

,,
ˆ

xtttt

xtttt
tu

rvrr

rvrr
r 


 (6) 

while the line-of-sight vector to an RSO on the second trajectory is 

      
    

    
    

    
      tu

xtttt

xtttt

xtttt

xtttt

xtttt

xtttt
tu

r
rvrr

rvrr

rvrr

rvrr

rvrr

rvrr
r

1
0100

0100

0100

0100

0200

0200
2

ˆ
,,

,,

,,

,,

,,

,,
ˆ


















(7) 

Because time t is arbitrary, clearly the two trajectories possess the same line-of-sight history for 

all time.  Thus, for a trajectory initially at 0x , any trajectory 0x  will possess the same line-of-

sight history.  Thus, a given line-of-sight history represents an infinite “family” of ambiguous 
trajectories. 
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It is important to understand exactly what assumptions lead to the above ambiguity.  Reference 8 
lists the following assumptions to guarantee such ambiguity: 

 1) Linear dynamics used to model the relative motion between the objects 

 2) Angle/LOS measurements only 

 3) No maneuvers by either object 

However, these assumptions do not fully convey the requirements (or constraints) on the mission 
scenario that will guarantee ambiguity.  The analysis below reveals a more accurate set of 
assumptions that will result in the ambiguity described above.  Consider the fact that each LOS 
measurement above only contains two independent pieces of information, which can be expressed 
as angles (e.g. azimuth/elevation (Az/El) or right ascension/declination (RA/Dec)) or slopes. 
Expressing the measurements as slopes, we have at each measurement time ti: 

 
 

 
 ix

iz
i

ix

iy
i tu

tu

tu

tu
  , (8) 

Noting that    
 i

i
ix tr

tx
tu  ,    

 i

i
iy tr

ty
tu  , and    

 i

i
iz tr

tz
tu  , we have  

 
 

 
 i

i
i

i

i
i tx

tz

tx

ty
  , (9) 

Substituting for x(t), y(t), and z(t) using Equation 1 yields  

 
 

 
  001

003

001

002

,

,
,

,

,

xtt

xtt

xtt

xtt

i

i
i

i

i
i 







  (10) 

where (t0,ti) is the first row of the state transition matrix, etc.  We can rearrange each  and  
measurement equation as 

        0,,,0,, 001003001002  xttxttxttxtt iiiiii      (11)

or 

          0,,,0,, 0010300102  xttttxtttt iiiiii  (12) 
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Suppose we obtain LOS measurements at p different times, collecting 2p total pieces of 
information (… n…  n).  Our 2p measurement equations are then 

    
    
    
    

    
     0,,

0,,

0,,

0,,

0,,

0,,

00103

00102

00212023

00212022

00111013

00111012









xtttt

xtttt

xtttt

xtttt

xtttt

xtttt

nnn

nnn















(13) 

These equations can be written as 00 xA , where A is a 2p x 6 matrix whose elements are all

constants, functions of the observer’s orbit, or functions of the measurement times (therefore all 
elements of A are known).  It is well known from linear algebra that if A is full rank, the only 
solution is the zero vector.  Physically, this corresponds to a situation where there is no trajectory 
under the assumed dynamics that exactly satisfies the constraints of the given measurements (i.e. 
that possesses that particular LOS history).  If A is less than full rank (i.e. singular), there is one 
nonzero solution for each degree of the null space of A.  However, these nonzero solutions are non-

unique, i.e. if 
*

0x  is a solution, so is 
*

0x , where  is any real constant.  This verifies the guaranteed 

ambiguity shown in Equation (7) above.  Inspection of the above derivation shows that ambiguity 
is guaranteed if the measurement equations are linear and homogeneous in the initial states.  This 
sufficiency condition is arguably the most fundamental way to explain the ambiguity detailed 
above.  For reasons that will be seen later, it is useful to decompose this condition into the following 
two conditions that equivalently guarantee ambiguity: 

 1) The relative motion between the objects are described by linear homogeneous dynamics 
(i.e. the relative states at any time can be expressed entirely as linear combinations of the 
initial relative states). 

 2) The relationships between the measurements and states at each measurement time are 
linear and homogeneous (i.e. these relationships can be written as homogeneous equations 
that are linear in the instantaneous relative states). 

These two assumptions quite evidently lead to the result in Equation (7).  Again, for reasons that 
will be seen below, these assumptions can be further decomposed into the following: 

 1a) The relative motion between the objects are described by linear dynamics.
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 1b) No external (non-homogenous) forces act on the objects.  This includes maneuvers,
non-conservative forces, and rigid-body contact forces such as those exerted on a camera
that is separated from the observer’s center of mass.

 1c) Measurements are taken by a single observer.

 2a) Angle/LOS measurements only

 2b) The relative motion is modeled in a Cartesian coordinate frame.

Note that, while these assumptions are equivalent to the single assumption originally stated above, 
they may not be unique; i.e. even if not all five of these assumptions are met, it may still be possible 
to guarantee the ambiguity of Equation (7) by formulating a different set of assumptions that are 
also equivalent to the original assumption.  However, for the scenarios detailed in this report, this 
particular set of assumptions will serve as the chosen set to guarantee ambiguity. 
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Herein lies the crux of these scenarios.  Given that ambiguity is guaranteed if all 5 total 
assumptions are met, it stands to reason that relaxing any one or more of these restrictions (i.e. 
“violating” one or more of the assumptions) may potentially yield observability, i.e. a unique 
relative state solution.  Examples of such “relaxations” include the following: 

 Use of nonlinear dynamics to describe the relative motion between the objects (relaxation
of Assumption 1a)

 Executing (and accounting for) one or more known maneuvers by either the observer or
RSO (relaxation of Assumption 1b)

 Accounting for non-conservative forces (e.g. drag or Solar Radiation Pressure) (SRP) in
the relative motion dynamics (relaxation of Assumption 1b)

 Installing the camera a certain distance apart from the observer’s center of mass (relaxation
of Assumption 1b)

 Processing other measurement types besides Angles/LOS (relaxation of Assumption 2a)

 Modeling the relative motion in a curvilinear (cylindrical or spherical) coordinate frame
(relaxation of Assumption 2b)

 Processing measurements by multiple observers (relaxation of Assumption 1c)

Note that these “relaxations” are mutually exclusive, e.g. one may account for non-conservative 
forces within a linear relative motion model and still have a hope of observability.  For these 
scenarios, IROD algorithms are devised based only on the first two “relaxations” listed above. 
These algorithms are tested on simulated optical measurement data.  A variety of different accuracy 
metrics are employed.  A major part of this investigation is to evaluate how well each “relaxation” 
adds to the observability and accuracy of angles-only IROD in various mission scenarios. 

Before proceeding, the motivation for a relative dynamics approach to initial orbit determination 
(as opposed to an inertial dynamics approach, or “classical” Initial Orbit Determination (IOD) 
should be pointed out.  One advantage of a relative approach is that several closed-form (explicit) 
relative motion solutions exist.  These solutions provide excellent insight into the motion, easy 
visualization, etc, and allow the possibility of closed-form IROD algorithms, i.e. algorithms that 
are non-iterative in nature. Such algorithms have been developed and are detailed in the sections 
that follow.  These algorithms do not require any specific knowledge of the RSO (other than the 
LOS measurements themselves) in order to determine its relative orbit.  The algorithms are 
attractive for autonomous/on-board implementation (or ground implementation during the hectic 
pace of mission operations) because they do not require human-in-the-loop supervision.  Compare 
this to classical IOD schemes [ 9-10], which tend to be iterative in nature. 
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3 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 Basic Description of IROD Approach 

In this section, the condition of guaranteed ambiguity (all assumptions in force) will be further 
described, then the effect of the first two “relaxations” in the bulleted list above will be described 
and how each of these “relaxations” leads to a candidate IROD algorithm. 

3.1.1 Guaranteed Ambiguity (“Woffinden’s Dilemma”)   

For the scenario of guaranteed ambiguity in Section 1, as governed by Equation’s (1)-(7), all five 
assumptions listed above are in force.  In order to illustrate the nature of the IROD algorithms that 
follow, here we derive the measurement equations a slightly different way than in Section 1. 
Consider a measured LOS vector at time ti in the LVLH frame, i.e. 

       ktujtuitutu iziyixir
ˆˆˆˆ  .  The measurement equations can be formed by requiring that

the relative position vector is parallel to each measured LOS: 

       
   

   
   

  0

0

0

0

ˆ 




















 i

ixiy

ixiz

iyiz

iiiir tr

tutu

tutu

tutu

trtUtrtu (14) 

or 

       
       
        0

0

0






iixiiy

iixiiz

iiyiiz

tytutxtu

tztutxtu

tztutytu

(15) 

Note that only two of the three above equations are independent, but we may include all three 
equations without loss of generality.  Further, the state-transition matrix can be used to relate the 
relative position vector to the initial state vector: 
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   
   
   

     0,,

0

0

0

000 




















xtttt

tutu

tutu

tutu

irvirr

ixiy

ixiz

iyiz

(16) 

So if we obtain LOS measurements at n different times, the measurement equations can be written 

as 00 xA , as in Section 1.  Once again, if there exists a nonzero solution 
*

0x , then any 
*

0x  is a 

solution as well.  Thus, a “direction” state vector can be determined that satisfies the measurement 

equations (denote this as 0
~x —a non-unique solution), but the magnitude of the state vector (denote 

this as ) cannot be determined.  This is often referred to as “range ambiguity” and is depicted in 
Figure 2 (where the Clohessy-Wiltshire solution is used to propagate the relative motion).  Each 

plot shows multiple trajectories sharing the same 0
~x  but each with a different of.  Note that the 

trajectories shown include some that might be considered “common” or “practical” for a proximity 
operations mission, as well as more obscure trajectories.  The point is that the relative state vector 

may consist of any six real values (representing an infinite space of 0
~x  in 6 ), and for any given 

0
~x ,  can take on any positive real value (representing an infinite “family” of ambiguous 

trajectories for that 0
~x ).  This scenario of guaranteed ambiguity will be referred to as “Woffinden’s 

Dilemma” because it was first described in Reference 8.  Note that this guaranteed ambiguity is 
not a function of how many measurements are taken; i.e. if all the assumptions guaranteeing 
ambiguity are in force, one cannot somehow create observability by taking more measurements. 

Figure 2. Various “Families” of Ambiguous Trajectories (all 5 
Assumptions in Force) 
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3.1.2 Utilization of Nonlinear Dynamics 

The first “relaxation” to be described is that of Assumption #1a above.  Here all aspects of the 
scenario described in the previous section are in force, except that the relative motion between the 
observer and RSO are modeled with nonlinear dynamics.  The nonlinear relative motion solution 
to be utilized is found [13-15]. This solution is similar to the Clohessy-Wiltshire solution in that it 
assumes two-body gravity and a circular chief orbit.  However, instead of retaining only terms 
linear in the initial relative states, it retains second-order terms as well.  The exact solution will not 
be repeated here, but it is of the following form: 

2
02701

2
02701

2
027008

2
07060201

)(...)()(

)(...)()(

)(...)()()(...)()()(

ztExtEtz

ztDxtDty

ztCyxtCxtCztCytCxtCtx













(17) 

Substituting for x(t), y(t), and z(t) into Equation’s (14) at measurement time ti yields 

   
   
    0)()()()(...)()()()(

0)()()()(...)()()()(

0)()()()(...)()()()(

2
02727011

2
02727011

2
02727011







ztDtutCtuxtDtutCtu

ztEtutCtuxtEtutCtu

ztEtutDtuxtEtutDtu

iixiiyiixiiy

iixiiziixiiz

iiyiiziiyiiz







(18) 

If we obtain LOS measurements at n different times, our 3n measurement equations are coupled 
second-order polynomials in six unknowns (the six initial relative states).  Note that these 

equations are not linear in the initial relative states, i.e. they cannot be written as 00 xA .  Thus,

if 
*

0x  is a solution to these equations, 
*

0x  is not, i.e. we have escaped Woffinden’s dilemma by 

employing nonlinear relative dynamics.  This situation is depicted in Figure 3.  While these plots 

are notional (i.e. not actual propagated trajectories), they represent two initial state vectors ( 0x  and

0x ) propagated forward with nonlinear dynamics.  The positions of the two objects relative to a

chief at the origin are shown at four different times.  While the LOS vectors of the objects are 
initially aligned, they deviate over time.  Whereas if the objects’ motion were propagated with 
linear dynamics, their LOS histories would be identical for all time. 
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Figure 3. Notional Depiction of Two Trajectories Propagated 
with Nonlinear Dynamics 

The issue that remains then is whether an efficient closed-form approach can be found to solve 
these equations.  This is left for Section 3. 

3.1.3 Utilization of Nonhomogeneous Dynamics 

The next “relaxation” to be described is that of Assumption #1b.  Here all aspects of the scenario 
described in the previous section are in force, except that the observer is not restricted to lie on the 
reference (chief) orbit during all the measurement times.  As alluded to earlier, the case of a 
maneuvering observer is subsumed under this scenario. 

Consider an RSO that performs a known maneuver v  at time mt .  Further consider a LOS 
measurement of the RSO collected at time it  after the maneuver.  The solution for the relative 
position at it  must now take into account the maneuver, thus Equation (4) becomes 

         vttxtttttr mirvirvirri  ,,, 000 (19) 
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The scenario more relevant to most proximity missions is that where the observer (whose motion 
is assumed known) performs the maneuver.  This is easily accommodated in the same framework, 
but requires clarification of some details.  Thus far, the state x  has been assumed to describe the 
position and velocity of the RSO relative to the observer at the origin of the LVLH frame. 
Alternatively, the origin of the LVLH frame can be considered to be an arbitrary object traveling 
along a two-body orbit.  In such cases, the object will be referred to as the “virtual chief,” and its 
orbit as the “reference orbit.”  While any orbit may serve as the reference orbit, it is often 
convenient to define the reference orbit based on the instantaneous ephemeris of the observer, then 
propagating that orbit forward to each measurement time with two-body dynamics.  Obviously the 
observer will gradually deviate from this reference orbit (i.e. the origin of the LVLH frame) due to 
perturbations, but for a reasonable span of time, it will remain close to the LVLH origin until/unless 
it maneuvers. 

Consider an observer initially located on the reference orbit.  The observer then performs a known 
maneuver v  at time mt .  Consider then a LOS measurement of the RSO collected at time it  after 
the maneuver.  The observer’s position at it  is given by   vtt mirv  , , so the relative position 
between observer and RSO at it  is shown below. 

         vttxtttttr mirvirvirri  ,,, 000 (20) 

From Equations (19) and (20), we see that a known maneuver performed by either the RSO or 
observer will generally produce some nonhomogeneous change r in the relative position.  For 
generality, both cases will be summarized as follows: 

        iirvirri trxtttttr  000 ,, (21) 

Substitution into the measurement equations (14) produces the following: 

   
   
   

    
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   
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

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

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

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


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000 (22) 
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Again, only two of the three equations are independent, but we may include all three equations 
without loss of generality.  Collection of measurements at n instants produces a system of equations 

that can be written as bxA 0 .  Note that if 
*

0x  is a solution to these equations, 
*

0x  is not, i.e. we 

have escaped Woffinden’s dilemma by employing nonhomogeneous relative dynamics.  This 
situation is depicted in Figure 4.  Here LOS measurements are taken at t1, t2, t3, and t4, and the 
observer maneuvers at tm between t3 and t4.  Because the maneuver takes the observer off the 
reference orbit, this will generally yield a different LOS at t4 than would be obtained if the observer 
had not maneuvered, as shown by the green trajectory.  In such a case, the observer’s position 
vector in the LVLH frame (i.e. relative to the origin) is in fact the r represented in Equation (22). 
If, however, the observer’s post-maneuver location happens to yield the same LOS at t4 as if the 
observer had not maneuvered (as shown by the red trajectory), then the right-hand side of Equation 
(22) is zero (because     0ˆ 44  trtu r

), thus the measurement equations remain homogeneous 
and no observability is gained.  This type of maneuver will be referred to as a “singular” maneuver. 
Of course, the resulting r  is a function of the relative trajectory, the maneuver 
time/magnitude/direction, and the post-maneuver measurement time.  Therefore, if a given 
scenario results in a “red” trajectory at t4, an additional measurement at t5 would likely yield 
observability.  For p LOS measurements, A is a 3p x 6 matrix.  If the matrix A is singular, there 
still will not be a unique solution (there will be either no solution or an infinite number of 
solutions), but if enough measurements are obtained such that A is full rank, a unique solution can 
be obtained via pseudoinverse: 

  bAAAx TT 1

0


 (23) 

It is worth re-emphasizing the point made at the beginning of this subsection: that a maneuver is 
not required to relax Assumption #1b.  Rather, if the position history of either the RSO or observer 
relative to the reference orbit over the span of measurement times is such that, for whatever reason, 
it cannot be accurately described by homogeneous linear dynamics, then the measurement 
equations will be as given in Equation (22).  Section 1 listed methods of relaxing Assumption #1b 
without maneuvering. 
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Figure 4. Notional Depiction of LOS Measurements Taken by 
Maneuvering Observer 

3.2 Detailed Description of IROD Algorithms 

Each IROD method estimates the 6 states corresponding to the trajectory of the observed object 
relative to the defined reference orbit at the epoch time, which is chosen to be the time of the first 
LOS measurement.  In all cases, the observer’s inertial ephemeris is assumed to be precisely 
known.  The IROD algorithms take advantage of the relaxations of the conditions for guaranteed 
ambiguity that were described in Section 1.  As described, the use of nonlinear dynamics produces 
a system of second-order polynomial equations, and the use of nonhomogeneous dynamics 
produces a system of nonhomogeneous linear equations.  Solving a system of second-order 
polynomials is nontrivial, and two different methods were implemented and are described below 
in Subsections 3.2.1 and 3.2.2.  Solving a system of nonhomogeneous linear equations is fairly 
straightforward, and the implementation of the method is described in Subsection 3.2.3. 

3.2.1 Linear Matrix Method (LMM) 

The Linear Matrix Method is a fairly ad-hoc approach to find an approximate solution to the system 
of second-order polynomials comprising the measurement equations in Equation (18).  The method 
is a two-step procedure.   

In the first step, each of the 27 possible linear and 2nd-order combinations of the six unknown 
variables (i.e., the unknown initial position and velocity components) are treated as independent 
unknowns.  These 27 terms or “monomials” can be assembled into a vector  : 
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 T27321   (24) 

where, consistent with the ordering of terms in Equation (17) and (18), 
1 corresponds to x0, 2

corresponds to y0, etc, and 27  corresponds to
2
0z . 

The measurement equations of Equation (18) are linear in the elements of  , and can thus be 
recast as 0A , where for n measurement times, A is a 3n x 27 matrix.  From Equation (18) we 
see that 

...

)()()()(...,),()()()(

)()()()(...,),()()()(

)()()()(...,),()()()(

272727,31131

272727,21121

272727,11111

etc

tDtutCtuAtDtutCtuA

tEtutCtuAtEtutCtuA

tEtutDtuAtEtutDtuA

iixiiyiixiiy

iixiiziixiiz

iiyiiziiyiiz







(25) 

If A is less than full rank (i.e. singular), there is one nonzero solution for each degree of the null 
space of A.  At first glance, this approach has not alleviated the range ambiguity because for each 

candidate solution 
* , the scaling 

*  is also a solution of 0A .  However, this ignores the

quadratic relations between the elements of  , i.e. in order for
* to be a viable solution to the

measurement equations, the 7th element of
*  must equal the square of the 1st element, etc.  The

second step of the method incorporates these constraints.  After solving a null space vector of A 

(call it 
~

),   is reformulated as:   

 T2
6

2
21

22
1

2
654321

~~~~~~~~~~   (26) 

where   remains to be solved.  Note that this step involves discarding the 7th through 27th 

elements of 
~

 (i.e. the elements pertaining to quadratic combinations of the unknowns).  Each 
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element of the reformulated vector 
~

 therefore contains   either linearly or quadratically. 
Substituting this vector back into the measurement equations, i.e. pre-multiplying by A, yields 
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Here, 61A  is a 3n x 27 matrix composed of the first 6 columns of A, and 277A  is a 3n x 21 matrix 
composed of the 7th through 27th columns of A.  This represents a set of 3n quadratic equations for 
 , the only remaining unknown.  Each equation actually contains a trivial solution at 0 .  
Factoring  out leaves a set of linear equations for  : 
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At this point it should be noted that if there were no model error (i.e. if the reference orbit were 
perfectly known and the solution in Equation (17) were an exact representation of spacecraft 
dynamics) and no measurement error (i.e. if Equation (14) represented the exact relationship 
between the state values and measurement values), we would be guaranteed to find a solution to 
the measurement equations (Equation (18) by the two-step process above.  That is, at least one null 

space vector of A would be guaranteed to exist (call it 
*~ ) , and there would be a value of   (call 

it * ) that, combined with 
*~ , would exactly solve each of the 3n equations in Equation (28).  This 

solution would correspond to the exact values of the relative states at the epoch time, 0x .  That is,

the following equalities would hold: 
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where x0, y0, etc, are the true initial state values.  However, due to model error and measurement 

error, we are not guaranteed that such a 
*~ or * exists.  The authors have simulated several cases 

with model error and/or measurement error, and a singular value decomposition of A shows that 
the matrix tends to have several singular values of approximately zero.  That is, there are several 

right-singular vectors of A (of the form 
~

) that approximately solve 0A .  It is desired to 
explore which of these vectors leads to the “best” solution of Equation (18), where “best” is here 
defined as the solution that yields the minimum RMS residual angle error (defined below). 
Therefore, the LMM algorithm proceeds as follows: 

 Given the LOS measurements and assuming the dynamics of Equation (17), construct the
A matrix according to Equation (25)

 Perform a singular value decomposition of A

 For each of the 27 right-singular vectors 
~

 of A, construct   according to Equation (26)

and calculate the least-squares solution for   in Equation (28) (described below)

 For this candidate solution 61

~
 , calculate the Root Mean Square (RMS) residual angle 

error by substituting these initial conditions into the second-order dynamics of Equation
(17) (specifically the x, y, and z expressions) to produce a predicted position vector at each

measurement time,         Tiiii tztytxtr  , and evaluate the following expression: 
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In Equation (30),  ir tû is the actual (measured) LOS at at ti, and n is the number of measurement

times.  Thus, this residual metric is the RMS angle difference between the predicted and actual 
LOS values.  The least-squares solution for   is calculated as follows: 
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Aq .  Note that, since p and q are both 27 x 1 vectors,   

Equation (31) represents a ratio of two scalars. Thus, of the 27 candidate solutions evaluated in the 
above process, the one selected as the IROD solution is that producing the lowest value of , which 
thus comes closest to satisfying the measurement equations, Equation (18).  Whereas, the linear 
matrix method does not have a rigorous theoretical basis, simulation has shown it is capable of 
generating reasonable solutions in the presence of errors.  While the authors concede that the A 
matrix will likely have several singular values significantly different than zero (which likely do 
not serve as good candidates for a solution), the reason for putting all 27 singular values through 
the above process is to emphasize the autonomous nature of the algorithm: rather than relying on 
a human-in-the-loop to evaluate whether each singular value of A is close enough to zero to merit 
consideration as a candidate solution, all singular values are given “equal opportunity” as 
candidate solutions. 

Finally, some comment should be made regarding the number of LOS measurements the LMM 
algorithm requires.  Technically, any number of measurements will allow the above steps to be 
followed in determining an IROD solution; because A is a 3n x 27 matrix, it will always have 27 
right-singular vectors regardless the value of n.  However, simulations have shown that for an 
adequate solution, measurements from at least 3 different times should be processed; given that 
each measurement time produces 2 independent measurements, this yields a number of 
independent measurements equal to the number of states.  Additional measurements should 
provide incremental improvement. 
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3.2.2 Matrix Resultant Method (MRM) 

Another approach implemented to solve the system of quadratic equations was based on the theory 
of resultant matrices, popularized by the work of Macaulay [16] and other mathematicians.  Two 
significant differences between this and the linear matrix method are that (1) the MRM algorithm 
solves a square system of equations (number of measurements equal to number of relative states) 
and (2) the MRM algorithm is based on rigorous theoretical development in the literature. 

To produce a square system of polynomial equations, two of the three equations generated at each 
measurement time (Equation 14) are selected.  A method was implemented to select the most 
“independent” pair of equations.  Each row of  itU  is defined as a vector.  Then, the norm of the 
cross product of each pair of vectors is calculated.  The pair of components associated with the 
two vectors with the largest cross-product norm (i.e. the pair that is most “differently directed”) is 
chosen for inclusion in the matrix resultant method. 

The specific implementation of Macaulay resultants to solve a system of n polynomials in n 
variables was based on [17].  However, a general overview of the method is provided here.  The 
method begins by selecting a root variable that will be solved for first.  The method is somewhat 
similar to the linear matrix method, in that the higher-order combinations of the remaining 
unknown variables are treated as independent unknowns and the equations are therefore treated as 
linear.  Additional equations to solve for these remaining unknowns are generated by multiplying 
the original equations by various polynomial combinations of the original unknowns, until a square 
system is reached.  This raises the overall order of the system, and can result in a large system of 
equations.  However, the generation of additional equations is carefully designed so that the 
solutions for the additional unknowns automatically satisfy the polynomial constraints among 
them (i.e., no discard & recombine step is necessary, as is performed in the linear matrix method). 

The result is a homogeneous system of linear equations for the polynomial equations of the 
remaining unknowns, where the coefficients are functions of the root variable.  The existence of a 
solution requires that the matrix of coefficients is singular, which can be posed as a generalized 
eigenvalue problem.  Solving this generalized eigenvalue problem produces multiple solutions for 
the root variable, many of which are infinite.  Substituting each finite value of the root variable 
one at a time into the matrix of coefficients and solving for the null vector of the system provides 
solutions for the remaining unknown variables (again, for each value of the root variable). 

For the solution of six quadratic equations for the six unknown initial states, the resulting 
generalized eigenvalue problem is 1584x1584.  Solution of this problem using the standard 
precision in MATLAB has been seen to result in large errors in the resulting solution.  Therefore, 
an alternative method was implemented based on concepts introduced in [18].  If the initial (epoch) 
time is chosen as the time of the first LOS measurement, then the following linear transformation 
can be substituted for the initial position components: 
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Thus, the three unknowns x0, y0, and z0, can be linearly replaced by the single unknown r0.  Then, 
the most “independent” pair of components at two additional measurement times are used to solve 

for the remaining four unknowns: r0 and the three initial velocity components 0x , 0y , and 0z .  The

three equations generated at each measurement are similar to Equation (18), but reformulated in 
terms of the new unknowns: 
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This implementation is referred to as the separation-magnitude formulation.  The solution of four 
quadratic equations for these four unknowns results in a generalized eigenvalue problem of 112 x 
112.  Solution of this problem results in significantly less loss of precision than the 1,584 x1,584 
scenario described above. 
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Some discussion is in order regarding the number of solutions yielded by the matrix resultant 
method.  According to Bezout’s Theorem [19], there are ab solutions to a system of coupled 
polynomials, where a represents the order of each polynomial and b represents the number of 
polynomials (i.e. number of variables).  For four 2nd-order polynomials, the number of solutions 
is then 16.  However, these solutions are in the complex domain, i.e. it is possible that each solution 
may consist of one or more values with imaginary parts.  There is no known theorem for how many 
real solutions may exist, so the best that can be said is that the maximum number of real solutions 
for a given scenario is 16. 

Unlike the infinite ambiguity associated with Woffinden’s dilemma, here we have a finite 
ambiguity to deal with.  Disambiguation of the (potentially) multiple real solutions is fairly 
straightforward.  First, the measurement equations require that the relative position vector at each 
measurement time be parallel to the LOS.  This can result in solutions that contain relative position 
vectors that are pointing the wrong direction (180o opposed to the LOS measurement) at one or 
more measurement times.  For each solution, the propagated relative position vector can be 
checked, and if it points in the wrong direction at any measurement time, the solution can be 
discarded.  At this point, there may still be multiple real solutions that satisfy the measurement 
equations.  However, experience shows that all but one of the remaining solutions are physically 
unrealistic, i.e. containing separation magnitudes (i.e. observer-to-RSO range values) far beyond 
the domain of applicability of the second-order solution.  Thus, the one realistic solution would be 
considered the “winner” for this algorithm. 

3.2.3 Nonhomogeneous Observer Method (NOM) 

The final IROD algorithm takes advantage of the observability provided by a nonhomogeneous 
observer, as described in the previous section.  The method uses data for the LOS vector from the 
observer to the RSO and the relative position vector of the observer relative to the reference orbit 
(both expressed in the reference orbit’s LVLH components).  The method assumes that the observer 
does not lie on the reference orbit during all the measurement times.  If this condition is met (for 
example) by the observer performing maneuvers during the span of the measurements, then the 
number of maneuvers, exact sequencing of the maneuvers within the measurements, and 
magnitude and direction of the maneuvers do not need to be explicitly input into the algorithm. 
Rather, one simply needs the observer’s position relative to the reference orbit at each 

measurement time resulting from the maneuvers; this is  itr  as represented in Equation (21).

As described previously, the method results in a linear system of equations, bxA 0 , for the 
unknown initial conditions, which can be solved by taking a pseudoinverse. So, whereas three 
independent LOS measurements (resulting in six measurement equations) are required for A (and 
therefore its pseudoinverse) to be full rank, there is no upper limit on how many LOS 
measurements can be incorporated.  Any number of measurements beyond three results in a least-

squares solution for 0x .  It should be noted that in a real scenario, error will exist in the observer’s

position.  Because the NOM method does not account for this error, it may be falsely attributed to 
nonhomogeneous motion and thus create a false sense of observability.  That is, if the observer 
deviates from the defined reference orbit due to position knowledge error, the NOM method will 
assume this deviation is due to a maneuver.  Therefore, in order for NOM to be effective, the 
maneuver (or other nonhomogeneous observer activity) must induce “true” nonhomogeneous 



Approved for public release; distribution is unlimited. 
23

motion that is greater than the “false” nonhomogeneous motion induced by the aforementioned 
errors. 

3.2.4 Practical Considerations 

Practical issues arise when performing the various IROD schemes detailed above.  Some of these 
issues are as follows: 

Eccentricity in the reference orbit: While the NOM method allows for an elliptical reference orbit, 
the LMM and MRM methods assume the reference orbit is circular.  For most scenarios of interest, 
this is not expected to be a problem for the LMM and MRM methods.  Typically, relative motion 
is driven more by the eccentricity difference between the “chief” and “deputy” orbits than by the 
eccentricity in the chief orbit itself (in fact, it is the eccentricity difference that causes the relative 
trajectory to resemble a 2 x 1 ellipse in the radial/along-track plane).  Simulations show that when 
the chief and deputy orbits both have small nonzero eccentricity, the relative trajectory closely 
resembles that for a circular chief orbit (e.g. the 2 x 1 ellipse).  Thus, it is expected that orbit 
eccentricity will not be a major issue when applying the LMM and MRM methods herein. 

Spatial and temporal regions of applicability for each method: It is expected that there are both an 
upper and lower limit on the time span of measurements for which the above methods will be 
effective.  This is because the shorter the time between first and last measurement, the less of a 
“look” the method gets at the orbit, while the longer this time interval, the more probability there 
is for an propagation error to build up between the dynamic model assumed by these methods and 
real motion in space.  Similarly, there is expected to be an upper and lower limit on the separation 
between the chief and deputy orbits (specifically, between the reference orbit and the orbit of the 
RSO being observed), in terms of where the above methods will be effective. This is because the 
closer these two orbits are, the more the relative motion between them appears linear.  In such 
“quasi-linear” conditions, it will likely be difficult to determine the proper magnitude (i.e. scaling) 
of the relative trajectory, even with methods designed to prevent Woffinden’s dilemma (such as 
the above methods).  Conversely, the more different the two orbits are, the more nonlinear the 
relative motion between them will be.  For example, there could be a scenarios where a closed-
form expression of the relative motion between two objects may require 3rd-order or higher terms 
to accurately represent the motion.  In such cases, the above methods likely would not perform 
well because the models assumed in those methods do not accurately represent the motion.  Thus, 
in both the spatial and temporal sense, there is an acceptable region, or “sweet spot,” where the 
methods should perform well. 

3.3 Description of Scenarios 

Before delineating the various scenarios, it is useful to reiterate the following properties of the 
IROD algorithms: 

 Each algorithm assumes knowledge of the observer location at each measurement time,
and in most cases the reference orbit (in whose frame the relative solution is expressed) is
defined based on this knowledge.
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 The algorithms require no knowledge of the observed object (orbit, shape/geometry, etc.),
other than the line-of-sight measurements to the object; any ephemeris information of the
observed object (e.g., on-board telemetry or external solutions) is used strictly for
verification.

 Two of the algorithms do not incorporate maneuvers by the observer, while one of the
algorithms does; all three algorithms assume the observed object is not maneuvering.

There are three general categories of scenarios explored herein: 

 Relative approach to classical (ground-based) IOD: Performance of IROD algorithms
utilizing ground sensor data

 Close-proximity IROD: Performance of IROD algorithms utilizing space-based sensor data

3.3.1 Ground-Based IROD (GIROD) 

In Subsection 3.1.3, it was described how observability can be induced if the observer does not lie 
along the defined reference orbit during all the measurement times.  This will be referred to here 
as the “nonhomogeneous condition.”  The NOM method described previously was constructed 
based on this condition.  Specifically, the nonhomogeneous condition is that the observer’s motion 
relative to the reference object (“virtual chief”), when expressed in the LVLH frame of the 
reference object, does not obey linear dynamics.  This condition was first described in the context 
of a maneuvering observer, since this is quite an obvious example of the condition.  It turns out 
that any observer actually meets this condition whether it is maneuvering or not, since its (real) 
motion relative to any defined two-body reference orbit is not linear.  However, because this 
relative motion is of very small magnitude (i.e. an observer’s orbit is generally very close to a 
neighboring two-body reference orbit), this is a “quasi-homogeneous” scenario.  That is, the 
observer’s motion relative to the virtual chief would add little to no observability (i.e. the proper 
scale factor of the motion could likely not be determined with any accuracy).  One type of scenario 
that meets the nonhomogeneous condition quite well is that of conventional ground-based tracking, 
where the observer is a sensor on the Earth.   
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To apply IROD to ground-based tracking data, the measurement equations are of the form in 
Equation (22).  Typically, data for an optical ground sensor consists of right ascension and 
declination of the line-of-sight from the sensor to the object expressed in some familiar coordinate 
frame, e.g. Earth-Centered Inertial (ECI) at each measurement time.  In addition, the sensor’s 
location on the Earth is known, typically in terms of latitude, longitude, and altitude.  Given this 
information, once a reference object and orbit are defined, the vector from the sensor to the 
reference object (“virtual chief”) in the reference object’s LVLH frame can be kinematically 

derived at each measurement time.  This vector is then  itr  in Equations (21) and (22).  The

NOM method can then be used to determine the orbit of the observed object in the reference 
object’s LVLH frame, i.e. the solution.  Note:  That GIROD constitutes a relative approach to the 
classical (ground-based) IOD problem. 

3.3.2 Close-Proximity IROD (CIROD) 

For these scenarios, various sets of LOS measurements from a space-based observer to an RSO 
are chosen, and each of the IROD algorithms will be used to process the measurements.  Cases are 
simulated that include one or more maneuvers interspersed between the measurements, as well as 
measurement sets involving no maneuvers. Cases are chosen involving various time spans from 
initial to final measurement, as well as varying degrees of separation between observer and RSO. 
The purpose here is not only to explore the general accuracy of the IROD algorithms, but also the 
limits of the acceptable region (both spatially and temporally) described above.   

3.3.3 Delineation of IROD test cases 

The various test cases to be demonstrated in the above two scenarios are characterized by variation 
of the following parameters, as detailed in Table 1: 

 Whether 1st-order (NOM) or 2nd-order (LMM or MRM) relative dynamics are assumed in
the IROD algorithm

 The choice of observer: either an observer satellite or a ground sensor

 The basis for choosing the reference orbit: either the observer ephemeris or a “virtual”
reference orbit
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Table 1. The Three Possible Delineations of Test Case 
Parameters in the Experiments to Follow 

Dynamics 
order 

Observer Observed 
object 

Reference 
object/orbit 

# of 
measurements 

timeline 

1st (NOM) ground sensor RSO virtual (variable) (variable) 
1st (NOM) observer 

satellite 
RSO observer 

satellite 
(variable) (variable) 

2nd (LMM 
or MRM) 

observer 
satellite 

RSO observer 
satellite 

(variable) (variable) 

Regarding the third bullet, the reference orbit may be constructed in two ways.  The first method 
is by obtaining an ephemeris for the observer just prior to the first measurement time, and 
propagating that ephemeris forward with two-body dynamics.  An “ad-hoc” method of reference 
orbit construction is based only on the LOS measurements and the assumption that the observed 
object is in a near-geosynchronous object.  Using the observer’s location, the intersection is 
calculated of the first LOS measurement with a sphere centered at the center of the Earth and radius 
equal to the geosynchronous semi-major axis.  The reference orbit at the initial epoch is positioned 
at the location of this intersection: 

     000 ˆ tutRtR robs  (34) 
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00 Geo
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T
r atRtRtRtu  (36) 

The positive solution for   corresponds to the desired intersection.  The reference orbit at the 
initial epoch is positioned at the location of this intersection.  The velocity of the reference orbit 
at this epoch is chosen with magnitude equal to that of a circular geosynchronous orbit and 
direction perpendicular to the initial position vector and parallel to the equatorial plane: 
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where K̂  is the unit vector in the direction of Earth’s polar axis.  To select from the two possible 
parallel directions, the velocity is chosen to be generally in the direction of the second LOS 
measurement.  This method is equivalent to selecting the reference orbit to be circular and 
geosynchronous, with inclination equal to the latitude of the observed object at the initial epoch, 
i.e. the reference orbit is assumed to be at its maximum absolute latitude at the initial epoch.   

The results shown in Section 4 illustrate the use of IROD techniques for ground-based tracking 
scenarios and close-proximity scenarios, each as a function of the various parameter choices 
detailed above and in Table 1. 

3.4 Data Requirements for Scenarios, with Description of Data Flow 

This section describes the specific inputs required for each of the scenario categories, the output 
(solution) information provided, and the flow of data through each IROD algorithm from inputs to 
output.  This structure is dictated largely by the delineation of IROD test cases detailed above. 

3.4.1 GIROD 

3.4.1.1 Input Structure 

Following are the inputs required for the ground-based IROD scenarios: 

 LOS measurements from ground sensor to observed object, expressed as right ascension
and declination in the ECI coordinate frame

 Time of each aforementioned LOS measurement

 Ground sensor latitude, longitude, and altitude at time of each LOS measurement

 Reference orbit information, constructed from the LOS measurements via Equation’s 34-
38 
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3.4.1.2 Data Flow (from Inputs to Output) 

Figure 5 illustrates how the above inputs are manipulated for processing to yield an IROD solution. 
The GIROD environment consists of two main MATLAB scripts: Pre_Process_Data.m, and 
Ground_Based_IROD.m, which are executed sequentially.  These scripts are further described in 
the following paragraphs. 

Figure 5. Flow Chart of Ground-based IROD Algorithmic 
Process 

3.4.1.2.1 Pre_Process_Data.m:  

The main purposes of Pre_Process_Data.m are (1) to compute ground sensor LOS (right ascension 
and declination) measurements of the observed object in the LVLH frame of the reference orbit 
and (2) to compute the vector from the sensor to the reference object (“virtual chief”) in the 
reference object’s LVLH frame at each measurement time.  The reference orbit is derived from the 
LOS measurements via Eqn’s 34-38.  The reference object is then propagated to each of the ground 
sensor measurement times using two-body (Keplerian) dynamics so that the ground sensor 
measurements can be converted from the ECI frame to the LVLH frame.  This script also loads a 
high fidelity ephemeris for the location of the ground sensor in the ECI frame, which also is 
converted at each measurement time to the LVLH frame.  The output of Pre_Process Data.m is 
data files in text format with the reference orbit ECI states, the LVLH relative position vector of 
the ground sensor at each measurement time, and the LOS vectors expressed in LVLH at each 
measurement time. 

3.4.1.2.2 Ground_Based_IROD.m:  

Ground_Based_IROD.m loads the aforementioned data files from Pre_Process Data.m.  The 
IROD solution is then calculated using the Nonhomogeneous Observer Method.  The specific 
output data is described in a later subsection. 
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3.4.2 CIROD 
3.4.2.1 Input Structure 

Following are the inputs required for the close-proximity IROD scenarios (all quantities are 
assumed to be obtained from on-board telemetry): 

 LOS measurements from observer to RSO, expressed in observer camera frame

 Time of each aforementioned LOS measurement

 Direction cosine matrix from observer camera frame to observer body frame

 Latest available observer rotational ephemeris (i.e. attitude estimate) before each LOS
measurement, with time tags

 Observer attitude rate (i.e. angular velocity) estimate before each LOS measurement, with
time tags

 Reference orbit information (i.e. time and ephemeris of observer) prior to the first LOS
measurement

If the NOM IROD method is employed, an additional input is the latest available observer orbit 
ephemeris before each LOS measurement, with time tag. 

3.4.2.2 Data Flow (from Inputs to Output) 

Figure 6 illustrates how the above inputs are manipulated for processing to yield an IROD solution. 
Generally, the description provided in this subsection applies to all three IROD algorithms.  The 
CIROD environment consists of three main MATLAB scripts: Save_Struct_Variables.m, 
Pre_Process_Cam_Data.m, and Close_Proximity_IROD.m, which are executed sequentially. 
These scripts are further described in the following paragraphs. 
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Figure 6. Flow Chart of Close-proximity IROD Algorithmic 
Process 

3.4.2.2.1 Save_Struct_Variables.m:  

Save_Struct_Variables.m loads the observer telemetry.  As detailed above, these data types are the 
observer inertial (translational) ephemeris information, rotational ephemeris information, 
orientation of the camera frame relative to the body frame, and azimuth and elevation 
measurements of the RSO in the camera frame.  It is assumed that this data exists in the form of a 
MATLAB structure.  Save_Struct_Variables.m parses this structure into separate text files for each 
data type. 

3.4.2.2.2 Pre_Process_Cam_Data.m:  

The main purpose of Pre_Process_Cam_Data.m is to convert observer azimuth and elevation 
measurements of the RSO (originally expressed in the observer camera frame) to LOS vector 
components in the LVLH frame of the reference orbit.  Thus, the inputs to this script are text files 
(generated from Save_Struct_Variables.m) for the azimuth and elevation measurements and 
associated times, camera frame orientation relative to the observer body frame, and the inertial 
ephemeris for the observer translational and rotational motion at various times. 
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The reference orbit is defined by propagating the first observer ephemeris forward with two-body 
dynamics.  Here, “first” is defined to be the latest available ephemeris before the first LOS 
measurement time.  Since the observer will not follow the (two-body) reference orbit precisely, 
the object whose motion defines the LVLH frame is in fact a “virtual chief,” as described 
previously.  Each camera frame azimuth and elevation measurement is then converted into a LOS 
vector in LVLH components via the following steps: 

 Express Az/El as a LOS vector in the camera frame:
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ru

 (39) 

 Convert the camera frame representation of the LOS vector into a body frame
representation via the direction cosine matrix  between the two frames:

cam
r

body
r uTu ˆˆ cam2body (40) 

(where the elements of Tcam2body are obtained from telemetry) 

 Convert the body frame representation of the LOS vector into an ECI representation via
the direction cosine matrix between the two frames:

body
r

ECI
r uTu ˆˆ body2ECI (41) 

(where the elements of Tbody2ECI are derived from quaternions using formulas from [20]) 
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 Convert the ECI representation of the LOS vector into an LVLH representation via the
direction cosine matrix between the two frames:

 
 
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VCVC

VCVC

VCVCVC

VCVCVC
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r u
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r
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
















(42) 

(where 
VCr and

VCv are the inertial position and velocity vectors of the virtual chief, i.e. 

reference object, at each measurement time, expressed in ECI coordinates) 

Two important details should be pointed out here.  First, regarding Equation (41), because the 
times associated with the observer ephemeris data generally are not the same as the “frame times” 
corresponding to the azimuth and elevation measurements, each rotational ephemeris (i.e. attitude 
estimate) is propagated from its epoch time to the proper measurement time in order to calculate

body2ECIT .  Namely, for each measurement time ti, the latest available quaternion values before time 

ti are propagated forward to ti.  This propagation assumes constant angular velocity, i.e. the values 
of the angular velocity vector components reported at the time of the above-mentioned quaternions 
are taken to be constant from the time they are reported until time ti. 

Second, regarding Equation (42), the virtual chief and its reference orbit are used to calculate 

ECI2LVLHT  at each measurement time, rather than using the latest available observer translational 

ephemeris, as is done with the rotational ephemeris above.  However, when utilizing the 
“nonhomogeneous observer” (NOM) algorithm described above, the latest available observer 
translational ephemeris is in fact propagated to each measurement time.  This is so that the relative 
position of the observer with respect to the reference orbit (i.e. virtual chief) can be computed at 

each measurement time (this is in fact the  itr term in Equation (21)).  Note that until the

observer performs a maneuver during the span of measurements (or if it does not perform any 

maneuvers at all), each  itr  will be due only to propagation error between the actual and the

two-body predicted location of the observer. 

The output of Pre_Process_Cam_Data.m is data files in text format with the relative position vector 
of the observer with respect to the reference orbit at each measurement time (in the event the user 
chooses the NOM method in the next script) and the LOS vector from the observer to the observed 
object at each measurement time; all vectors are expressed in the LVLH frame of the reference 
orbit. 
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3.4.2.2.3 Close_Proximity_IROD.m:  

Close_Proximity_IROD.m loads data files for the observer’s inertial ephemeris (obtained from 
Save_Struct_Variables.m) and the LOS vectors (obtained from Pre_Process_Cam_Data.m).  This 
script then asks the user to select one of the three IROD algorithms described in Section 3.2 (LMM, 
MRM, or NOM).  If the nonhomogeneous observer method is selected, then the data file for the 
observer’s relative position vector is also loaded.  The output of Close_Proximity_IROD.m is the 
IROD solution; the specific output data is described in the subsection below.  

3.4.3 Output Metrics and Verification 

Once the chosen IROD algorithm is finished executing, the solution is output to the command 
window (and saved to a data file) in several formats, including: 

 Relative states of the observed object in the LVLH frame of the reference orbit, at the epoch
time (e.g. first measurement time)

 Relative orbit elements of the observed object (described below), at the epoch time

 ECI position and velocity of the observed object, at the epoch time

 Classical orbital elements of the observed object

The RMS residual angle error described in Equation (30) is also displayed and written to a file. 
Additionally, plots of the solved relative-motion trajectory are generated, overlaid with the LOS 
measurements and perhaps with the simulated truth (2-body) trajectory.  For each test case 
explored in the Results section, various metrics chosen from those above will be displayed. 

3.4.4 Relative Orbit Elements 

Relative Orbit Elements (ROEs) are a geometric description of relative motion between two space 
objects, termed the “chief” and “deputy.”  ROEs are analogous to classical orbital elements, which 
describe two-body inertial motion of a single object.  The ROE formulation adopted here first 
appeared in [21-22]. This particular ROE set serves as a re-parameterization of the Clohessy-
Wiltshire solution, under which the motion can be generally described as a drifting 2x1 ellipse in 
the x-y (radial/along-track) plane, with sinusoidal motion in the z (cross-track) direction 

superposed.  The conversion from Cartesian relative states  Tzyxzyx   to ROEs is as follows:
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(43) 

where ae is the length of the semi-major axis of the 2x1 ellipse, xd is the radial distance of the 
center of the ellipse above or below the y (along-track) axis, yd is the along-track distance of the 
center of the ellipse ahead or behind the x (radial) axis,  is the anomaly angle indicating the 
deputy’s location in its relative orbit, zmax is the amplitude of the sinusoidal cross-track motion, 
and  is the phase difference between the radial/along-track motion and cross-track motion. Under 
the assumptions of Clohessy-Wiltshire motion, ae, xd, zmax, and  remain constant while  and yd 
vary linearly with time.  For real scenarios, this will not be the case, but it is still useful at any 
point in a scenario to convert the Cartesian relative states to ROEs in order to get an instantaneous 
“snapshot” of the geometry of the relative orbit.  It is also instructive to explore how “Woffinden’s 
Dilemma” affects ROE values.  As was done in a previous section, consider two trajectories, one 

whose values at t0 are given by 01x  and the other whose initial values are 0102 xx  , where  is a

positive real number.  At any given time t, the value of ae for the two trajectories are related by: 
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(44) 

Thus we see that ae, scales with .  It can also be shown that xd, yd, and zmax scale with , while  
and  remain unchanged regardless the value of . Recall this type of ambiguity was previously 
described as an infinite “family” of trajectories possessing the same line-of-sight history, whose 
(Cartesian) relative state values at any given time are scale multiples of one another.  In terms of 
ROEs, we can say that this family of trajectories all possess the same  and  history, while ae, xd, 
yd, and zmax of these trajectories are related by scale multiples. 

Consider in particular the ROEs that remain constant (ae, xd, zmax, and ).  Suppose we have “truth” 
knowledge of a relative orbit via Two-line Element (TLE), Global Positioning System (GPS), etc., 
we utilize one of the IROD methods to obtain an estimate for the orbit, and we want to evaluate 
the accuracy of our solution.  At any chosen time, suppose we evaluate the ROE values for both 
the “truth” orbit and the estimated orbit.  If the estimate captures the proper “family” of the true 
trajectory but fails to capture the proper “” scale factor, the ratio of the estimated value of ae to 
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the “true” value of ae, the ratio of the estimated xd to the “true” xd, and the ratio of the estimated 
zmax to the “true” zmax should all be nearly equal.  That is: 

 

true

est

trued

estd

truee

este

z

z

x

x

a

a

max,

max,

,

,

,

,          (45) 

 

If in fact the estimate captures the proper scale factor as well, these ratios will be near 1.  In the 
case of , because this parameter remains constant under Clohessy-Wiltshire assumptions and 
remains unchanged regardless the value of , this means that as long as the estimate at least 
captures the proper “family” of the true trajectory, the  ratio should be near 1.  Note that if the 
space objects in the scenario behaved according to Clohessy-Wiltshire motion rather than real 
motion, the ratios in Equation (45) would be exactly equal (specifically 1 if the estimate were to 
capture the proper scale factor), and the  ratio would be exactly 1.  Because of their usefulness in 
assessing the quality of an IROD solution, ROE ratios will be evaluated for many of the scenarios 
detailed in the next section. 
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4 RESULTS AND DISCUSSION 

Several test cases have been explored, within the two categories delineated in Section 3 and 
employing various combinations of the parameters outlined in Table 1.  For each test case, some 
basic details of the case are given, including the number and time span of the measurements, a 
brief description of the space objects’ motion, and the combination of Table 1 parameters 
employed.  Results are presented in terms of the various metrics outlined in the previous section. 

4.1 GIROD 

These results are based on simulated ground observations (i.e. LOS measurements) of a space 
object during a single night of viewing.  The chosen location of the sensor is 35°N lat, 111ºW long 
(near Flagstaff, AZ).  To represent a realistic sensor, a small amount of Gaussian error was added 
to each LOS measurement. 

4.1.1 GIROD Scenario 1 

Table 2. Description of GIROD Scenario 1, Including Table 1 
Parameter Values 

Dynamics 
order 

Observer Observed 
object 

Reference 
object/orbit 

# of 
measurements 

Time span 

1st (NOM) ground sensor RSO virtual 243 4hrs 41min 

The IROD approach formulates the problem as solving for the motion of the RSO relative to a 
reference orbit.  In this scenario, the reference orbit is constructed using the ad-hoc method 
described in Equation’s (34)-(38), based on LOS measurement data for the RSO.  Table 2 gives a 
basic description of this case.  The orbital elements of the resulting reference orbit are shown in 
Table 3, row (a).  The IROD solution is computed using 243 observations.   

The IROD solution, together with the constructed reference orbit, can be kinematically 
transformed to compute a solution for the inertial orbit of the RSO.  Figure 7 illustrates the LOS 
measurements from the ground observer to the RSO, with the true propagated inertial orbit 
overlaid with the propagated inertial orbit obtained kinematically from the IROD solution.  The 
RMS angle residual between the propagated IROD solution and the LOS measurements, 
described in Equation (30), is 1.266*10-6 rad.  This indicates that the IROD solution provides 
good agreement with the LOS measurements. 
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Figure 7. GIROD Scenario 1, with Observed Lines of Sight 
From Ground Sensor, Superimposed with True Propagated 
Trajectory (Blue) and IROD Solution Trajectory (Green) 

The orbital elements for this solution are shown in Table 3, row (b). Because the IROD method 
requires a reference orbit in close proximity, it is instructive to use this IROD solution to define a 
new reference orbit and reapply the IROD method.  This was performed in this particular case, 
with the resulting orbital elements shown in Table 3, row (c).  The RMS angle residual is now 
9.73*10-7 rad, indicating a slightly better agreement between this solution and the measurements 
than was obtained with the first IROD solution.  Finally, Table 3, row (d) shows the true orbital 
elements of this scenario. 
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Table 3. Orbital Elements from Scenario 2 for (a) Constructed 
Reference Orbit, (b) First IROD Solution, (c) Second IROD 
Solution, (d) True Orbit 

 a (km) e I (deg)  Omega 
(deg) 

omega 
(deg) 

perigee 
crossing 
time 
(SPM) 

(a) 42,241.00 0 0.32343 296.299 undefined undefined 
(b) 42,552.15 0.001123 0.32773 326.917 326.501 4545.271 
I 42,552.70 0.001137 0.32784 326.951 327.149 5095.156 
(d) 42,551.78 0.001170 0.32782 327.031 326.220 4875.806 

4.1.2 GIROD Scenario 2 

Table 4. Description of GIROD Scenario 2, Including Table 1 
Parameter Values 

Dynamics 
order 

Observer Observed 
object 

Reference 
object/orbit 

# of 
measurements 

Time span 

1st (NOM) ground sensor RSO virtual 121 38pprox.. 
2hrs 

Next, Scenario 1 is rerun using a reduced measurement set.  Only the first half of the 
measurements is used.  The orbital elements from the resulting IROD solution are shown in 
Table 6.  The values can be compared with the results in Table 3, and show good performance 
even in the presence of the smaller data set.  The RMS angle residual is 6.73*10-7 rad. 

Table 5. Orbital Elements from Scenario 2 

a (km) e I (deg)  Omega 
(deg) 

omega 
(deg) 

perigee 
crossing 
time 
(SPM) 

42,549.23 0.001148 0.32770 326.837 324.373 4396.959 
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4.1.3 GIROD Scenario 3 

Table 6. Description of GIROD Scenario 3, Including Table 1 
Parameter Values 

Dynamics 
order 

Observer Observed 
object 

Reference 
object/orbit 

# of 
measurements 

Time span 

1st (NOM) ground sensor RSO virtual 60 39pprox.. 
1hr 

 
 
Finally, the same scenario is rerun using only the first quarter of the measurements.  The orbital 
elements from the resulting IROD solution are shown in Table 8.  Comparing these results to the 
values in Table 3, this reduced data set shows significant degradation in performance.  But the 
solution can still be seen as a reasonable approximation of the true orbit.  The RMS angle 
residual is 6.96*10-7 rad. 
 

Table 7. Orbital Elements from Scenario 3 

a (km) e I (deg)  Omega 
(deg) 

omega 
(deg) 

perigee 
crossing 
time 
(SPM) 

42,566.07 0.001127 0.32713 326.851 339.372 8026.940 

 

4.1.4 Assessment of GIROD Results 

The NOM method has been utilized here as a novel way to perform ground-based IOD.  With this 
method, the user is free to construct the reference orbit in any practical way.  In most of the 
scenarios, NOM IROD solutions compare well to the simulated (2-body) truth trajectory.  Note 
that the LMM and MRM methods are not applicable in the GIROD context, since both assume a 
space-based observer, whose orbit serves as the basis for the reference orbit. 
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4.2 CIROD 

In these scenarios, the true RSO orbit from Table 3, row (d) is again used, and an observer satellite 
orbit is simulated so as to create a particular relative orbit between the observer and RSO.  If the 
orbit element differences between the observer and RSO are small, in relative (LVLH) space the 
resulting motion is approximately a 2x1 ellipse in the x-y (radial/along-track) plane whose center 
is along the y axis, superposed with sinusoidal motion in the z (cross-track) direction.  In each 
scenario, the true relative orbit will be expressed in terms of the relative orbit elements (ROEs) 
described in Subsection 3.4.4.  Again, to represent realistic scenarios, a small amount of Gaussian 
error was added to each LOS measurement and to the observer’s orbit (i.e. navigation error). 

4.2.1 CIROD Scenario 1 

 

Table 8. Description of CIROD Scenario 1, including Table 1 parameter 
values 

Dynamics 
order 

Observer Observed 
object 

Reference 
object/orbit 

# of 
measurements 

Time span 

2nd  (LMM) observer 
satellite 

RSO observer 
satellite 

40 25hrs, 
24min 

 

Table 9. True Relative Orbit of CIROD Scenarios 1-4, in Terms 
of ROE Values 

ae,true (km) xd,true (km) yd,true (km) zmax,true (km) true (rad) true (rad)
20 0 0 10 0 0 

 

Table 8 gives a basic description of this case, and Table 9 shows the ROE values of the true relative 
orbit.  The time span of measurements is quite long, beyond one orbit period.  Here the LMM 
method described in Subsection 3.2.1 was applied, which utilizes the second-order relative motion 
solution of [13-15]. The resulting RMS residual angle error over the 40 measurements, described 
in Equation (30), is 1.483265*10-2 rad.   

Figure 8 depicts the estimated relative trajectory in blue in the x-y (radial/along-track) plane, along 
with line-of-sight vectors in red from the observer (at the origin) to the observed object at each 
measurement time.  The points along the estimated relative trajectory at each measurement time 
are marked “x.”  This allows a visual assessment of the residuals.  For comparison, the true relative 
orbit is shown in green.  Note in this case that the true relative orbit is extremely small compared 
to the IROD solution.  Figure 9 depicts the estimated relative trajectory in terms of z (cross-track) 
motion vs time, with the true z motion overlaid.  Again, the IROD solution is in blue and the true 
motion is in green.  The scheme of line styles and colors used in 
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Figure 8 and Figure 9 will be used throughout the next several CIROD scenarios.   

Table 10 shows the ROE ratios for this scenario, as described in Subsection 3.4.4.  Note that 

compe

este

a

a

,

, and 
comp

est

z

z

max,

max, are nearly equal and both very close to 1.  Based on the discussion in 

Subsection 3.4.4, this indicates that the IROD solution agrees well with the true orbit except for a 
slight error in the scale factor, i.e. the estimated relative orbit is slightly smaller than the true 
relative orbit.  (The xd ratio is not a good indicator in this scenario because the “true” xd is zero.)  

Table 10. RMS Residual Angle Error and ROE Ratios for 
CIROD Scenarios 1-8 

Scenario # RMS angle 
(rad) 

truee

este

a

a

,

,  
trued

estd

x

x

,

,  
true

est

z

z

max,

max,  

1 0.003806 0.872607 -0.07745 0.920783 
2 0.00256 2.896092 -0.06374 3.128704 
3 0.00905 0.824447 -1.4802 0.891407 
4 0.000279 2.329194 -1.35423 2.983688 

 
 

 

 

 

Figure 8. LVLH Trajectory of IROD Solution for CIROD 
Scenario 1 (x vs. y), with LOS Measurements and True 

Relative Orbit Displayed 
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Figure 9. LVLH Trajectory of IROD Solution for CIROD 
Scenario 1 (z vs. t), with True Relative Orbit Displayed 

  

4.2.2 CIROD Scenario 2 

Table 11. Description of CIROD Scenario 2, Including Table 1 Parameter 
Values 

Dynamics 
order 

Observer Observed 
object 

Reference 
object/orbit 

# of 
measurements 

Time span 

2nd  (LMM) observer 
satellite 

RSO observer 
satellite 

40 12hrs, 
24min 

 

Table 11 gives a basic description of this case.  The true relative orbit is the same as that of 
Scenario 1, but the time span of measurements is approximately half that of Scenario 1.  Here the 
LMM method was again applied, with a resulting RMS residual angle error of 2.560306*10-3 
rad.  Figure 10 depicts the estimated relative trajectory in the x-y plane, with line-of-sight vectors 
and the true relative orbit overlaid.  Figure 11 depicts the estimated relative trajectory in terms of 
z (cross-track) motion vs time, with the true relative orbit overlaid.  Table 10 shows the ROE 
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ratios for this scenario.  Note that 
compe

este

a

a

,

, and 
comp

est

z

z

max,

max, are nearly equal, with both ratios 

approximately 3.  Thus it can be concluded that the IROD solution in this scenario is somewhat 
less accurate than that for Scenario 1.  

 

 

 

Figure 10. LVLH Trajectory of IROD Solution for CIROD 
Scenario 2 (x vs. y), with LOS Measurements and True 

Relative Orbit Displayed 
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Figure 11. LVLH Trajectory of IROD Solution for CIROD 
Scenario 2 (z vs. t), with True Relative Orbit Displayed 

4.2.3 CIROD Scenario 3 

Table 12. Description of CIROD Scenario 3, Including Table 1 
Parameter Values 

Dynamics 
order 

Observer Observed 
object 

Reference 
object/orbit 

# of 
measurements 

Time span 

2nd  (LMM) observer 
satellite 

RSO observer 
satellite

40 6hrs 

 

Table 12 gives a basic description of this case.  The true relative orbit is the same as that of 
Scenarios 1 and 2, but the time span of measurements is approximately half that of Scenario 2.  
Here the LMM method was again applied, with a resulting RMS residual angle error of 
9.05196*10-3 rad.  Figure 12 depicts the estimated relative trajectory in the x-y plane, with line-
of-sight vectors and the true relative orbit overlaid.  Table 10 shows the ROE ratios for this 
scenario.  Judging from the ROE ratios, the IROD solution in this scenario is actually more 
accurate than that for Scenario 2, and nearly as accurate as that for Scenario 1. 
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Figure 12. LVLH Trajectory of IROD Solution for CIROD 
Scenario 3 (x vs. y), with LOS Measurements and True 

Relative Orbit Displayed 

4.2.4 CIROD Scenario 4 

Table 13. Description of CIROD Scenario 4, Including Table 1 Parameter 
Values 

Dynamics 
order 

Observer Observed 
object 

Reference 
object/orbit 

# of 
measurements 

Time span 

2nd  (LMM) observer 
satellite 

RSO observer 
satellite

40 1hr 

Table 13 gives a basic description of this case.  The true relative orbit is the same as that of 
Scenarios 1-3, but the time span of measurements is reduced to one hour.  Here the LMM 
method was again applied, with a resulting RMS residual angle error of 2.785607*10-4 rad.  
Figure 13 depicts the estimated relative trajectory in the x-y plane, with line-of-sight vectors and 
the true relative orbit overlaid.  Table 10 shows the ROE ratios for this scenario.  Judging from 
the ROE ratios, the accuracy of the IROD solution in this scenario is comparable to that of 
Scenario 2.   
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Figure 13. LVLH Trajectory of IROD Solution for CIROD 
Scenario 4 (x vs. y), with LOS Measurements and True 

Relative Orbit Displayed 

4.2.5 CIROD Scenario 5 

 

Table 14. Description of CIROD Scenario 5, Including Table 1 
Parameter Values 

Dynamics 
order 

Observer Observed 
object 

Reference 
object/orbit 

# of 
measurements 

Time span 

2nd  (MRM) observer 
satellite 

RSO observer 
satellite

3 24hrs 

 

Table 15. True Relative Orbit of CIROD Scenarios 5-6, in 
Terms of ROE Values 

ae,true (km) xd,true (km) yd,true (km) zmax,true (km) true (rad) true (rad)
12 1 30 5.5 0 0 

The next two scenarios utilized the MRM method, which is constructed to solve a “square 
system,” i.e. 6 independent measurement equations in 6 unknown relative states.  Therefore the 
number of LOS measurements processed for each of these scenarios will be 3.  Table 14 gives a 
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basic description of this case, and Table 15 shows the ROE values of the true relative orbit.  The 
time span of measurements is one orbit period. 

The resulting RMS residual angle error over the 3 measurements processed is 6.656256*10-3 rad, 
while the RMS residual angle error over all available measurements during this time is 
5.434810*10-3 rad.  

Figure 14 depicts the estimated relative trajectory in the x-y plane, with line-of-sight vectors and 
the true relative orbit overlaid.  

Figure 15 depicts the estimated relative trajectory in terms of z (cross-track) motion vs time, with 
the true relative orbit overlaid.  Table 16 shows the ROE ratios and differences for this scenario.  
Specifically, ratios on ae, xd, yd, and zmax are displayed, as well as differences in  at the initial 

measurement time and .  Note that 
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max, are all nearly equal, and 

the  and  differences are small.  This indicates that the IROD solution agrees well with the true 
relative orbit except for a slight error in the scale factor. 

 

Table 16. RMS Residual Angle Error and ROE 
Ratios/Differences for CIROD Scenarios 5-6 

Scenario # RMS 
angle 

(rad), 3 
measure
ments 

RMS 
angle 

(rad), all 
measure
ments 
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compest  
(rad) 

 
5 0.006656 0.005435 0.958401 0.589662 0.983845 0.056225 1.00872 -0.06497 
6 0.000125 0.000102 2.777522 2.841772 4.40675 -0.00682 2.78567 0.008593 
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Figure 14. LVLH Trajectory of IROD Solution for CIROD 
Scenario 5 (x vs. y), with LOS Measurements and True 

Relative Orbit Displayed 

 

 

Figure 15. LVLH Trajectory of IROD Solution for CIROD 
Scenario 5 (z vs. t), with True Relative Orbit Displayed 
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4.2.6 CIROD Scenario 6 

 

Table 17. Description of CIROD Scenario 6, Including Table 1 
Parameter Values 

Dynamics 
order 

Observer Observed 
object 

Reference 
object/orbit 

# of 
measurements 

Time span 

2nd  (MRM) observer 
satellite 

RSO observer 
satellite

3 3hrs 

 

Table 17 gives a basic description of this case.  The true relative orbit is the same as that of 
Scenario 5, but the time span of measurements is reduced to 3hrs.  Here the MRM method was 
again applied, with a resulting RMS residual angle error of 1.252948*10-4 rad over the 3 
measurements processed, and 1.023028*10-4 rad over all available measurements.   

Figure 16 depicts the estimated relative trajectory in the x-y plane, with line-of-sight vectors and 
the true relative orbit overlaid.  Figure 17 depicts the estimated relative trajectory in terms of z 
(cross-track) motion vs time, with the true relative orbit overlaid.  Table 16 shows the ROE ratios 

and differences for this scenario.  Here, 
compe

este

a

a

,

, , 
compd

estd

x

x

,

, , 
compd

estd

y

y

,

, , and 
comp

est

z

z

max,

max, are roughly equal 

but further from 1 than in Scenario 5, and again the  and  differences are small.  Thus it can be 
concluded that the IROD solution in this scenario is somewhat less accurate than that for 
Scenario 5. 
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Figure 16. LVLH Trajectory of IROD Solution for CIROD 
Scenario 6 (x vs. y), with LOS Measurements and True 

Relative Orbit Displayed 

 

Figure 17. LVLH Trajectory of IROD Solution for CIROD 
Scenario 6 (z vs. t), with True Relative Orbit Displayed 
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4.2.7 CIROD Scenario 7 

 

Table 18. Description of CIROD Scenario 7, Including Table 1 
Parameter Values 

Dynamics 
order 

Observer Observed 
object 

Reference 
object/orbit 

# of 
measurements 

Time span 

2nd  (MRM) observer 
satellite 

RSO observer 
satellite

19 13hrs,30m 

 

Table 19. True Relative Orbit of CIROD Scenarios 7-8 (Pre-
maneuver), in Terms of ROE Values 

ae,true (km) xd,true (km) yd,true (km) zmax,true (km) true (rad) true (rad)
32 0 0 10 0 0 

 

The next two scenarios utilized the NOM method, which takes advantage of maneuvering by the 
observer to enhance observability.  As mentioned previously, the success of NOM depends on a 
significant enough maneuver to cause deviation in the observer’s position from the reference orbit 
at each measurement time that is greater than deviation due simply to position error.  Likewise, the 
change in post-maneuver LOS measurements, compared to the measurements had the vehicle not 
maneuvered, should be greater than LOS error.   

Table 18 gives a basic description of this case, and Table 19 shows the ROE values of the true 
relative orbit at the initial time (i.e. before the observer maneuvers).  The time span of 
measurements is just over one-half orbit period, and 19 measurements (sampled evenly across the 
entire set) were utilized for the solution. 

The resulting RMS residual angle error over the 19 measurements processed is 1.924892*10-2 rad.  
Figure 18 depicts the estimated relative trajectory in the x-y plane, with line-of-sight vectors and 
the true relative orbit overlaid.  The line-of-sight vectors are plotted in red at each measurement 
time, originating from the observer and pointing in the direction of the RSO.  The deviation of the 
vehicle from the reference orbit (i.e. the origin of the plot) due to maneuvering is evident.  A small 
amount of maneuvering begins within the first few measurement times, then a significant 
maneuver occurs between the 11th and 12th measurements, moving the vehicle roughly 15km 
downrange of the reference orbit by the 12th measurement time.  It should be re-emphasized that 
the NOM method estimates the RSO’s motion in the LVLH frame of the reference orbit.  Since the 
reference orbit was constructed based on the observer’s orbit at the first measurement time (call 
this t0), the IROD trajectory depicted is the “pre-maneuver” orbit, i.e. the relative orbit the vehicle 
would see for all time had it remained on the orbit that it possessed at t0.  The true relative trajectory 
is seen to match the LOS vectors early on, until maneuvering begins causing the vehicle to “see” 
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a different relative orbit.  If the authors had kinematically converted the true relative orbit from the 
instantaneous LVLH frame of the observer to the “pre-maneuver” LVLH frame, the green asterisks 
would closely match the LOS vectors at every measurement time.  Figure 19 depicts the estimated 
relative trajectory in terms of z (cross-track) motion vs time, with the true relative orbit overlaid.  
Here again the effect of vehicle maneuvering is evident, as the true relative orbit matches the IROD 
trajectory fairly closely at first, then begins to deviate slightly, and deviates more significantly later 
on.  Table 20 shows the ROE ratios and differences for this scenario.  Again, the ae and zmax ratios 
are roughly equal, and are both near 1.  This indicates that the IROD solution generally matches 
the true relative orbit, including the scale factor.  (The xd ratio is not a good indicator in this scenario 
because the “true” xd is zero.) 

Table 20. RMS Residual Angle Error and ROE 
Ratios/differences for CIROD Scenarios 7-8 

Scenario # RMS 
angle 
(rad) compe

este

a

a

,

,
 

compd

estd

x

x

,

,
 compest  

(rad) comp

est

z

z

max,

max,

 

compest  
(rad) 

 
7 0.019249 0.845896 -59.6686 -0.06662 1.045267 0.063935 
8 0.006483 1.842167 83.21633 -0.0419 1.77918 0.025322 

 
 

 

Figure 18. LVLH Trajectory of IROD Solution for CIROD 
Scenario 7 (x vs. y), with LOS Measurements and True 

Relative Orbit Displayed 
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Figure 19. LVLH Trajectory of IROD Solution for CIROD 
Scenario 7 (z vs. t), with True Relative Orbit Displayed 

4.2.8 CIROD Scenario 8 

Table 21. Description of CIROD Scenario 8, Including Table 1 
Parameter Values 

Dynamics 
order 

Observer Observed 
object 

Reference 
object/orbit 

# of 
measurements 

Time span 

2nd  (MRM) observer 
satellite 

RSO observer 
satellite

8 2hrs,25m
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This scenario is initialized with the same conditions as the previous scenario, but the time span 
of measurements is reduced to roughly 2.5 hours. Table 21 gives a basic description of this case.  
Here the NOM method was again applied, with a resulting RMS residual angle error of 
6.483021*10-3 rad.  Figure 20 depicts the estimated relative trajectory in the x-y plane, with line-
of-sight vectors and the true relative orbit overlaid.  As mentioned in the previous scenario, only 
a small amount of maneuvering occurs during this span of measurements.  This accounts for the 
true relative orbit matching the LOS vectors early on, then deviating slightly.  Figure 21 depicts 
the estimated relative trajectory in terms of z (cross-track) motion vs time, with the true relative 
orbit overlaid.  Table 20 shows the ROE ratios for this scenario.  These ratios reflect a scale 
factor error of approximately 2.  The fact that that this IROD solution does not compare as well 
with the true relative orbit as the solution of Scenario 7 makes logical sense, since the amount of 
maneuvering by the observer during the span of measurements was much less than in Scenario 7. 

Figure 20. LVLH Trajectory of IROD Solution for CIROD 
Scenario 8 (x vs. y), with LOS Measurements and True 

Relative Orbit Displayed 
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Figure 21. LVLH Trajectory of IROD Solution for CIROD 
Scenario 8 (z vs. t), with True Relative Orbit Displayed 
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5 CONCLUSIONS 

This report has detailed a relative motion-based approach to angles-only initial orbit determination 
known as IROD and introduced multiple techniques applied in several scenarios pertinent to both 
classical (ground-based) orbit determination scenarios and close-proximity navigation missions. 
Each technique is based on “relaxation” of one of the conditions known to guarantee observability, 
a phenomenon that would lead to an infinite number of ambiguous solutions.  The techniques are 
as follows: 

 Linear Matrix Method (LMM): relies on second-order relative orbit dynamics to avoid
observability; processes any number of line-of-sight measurements, utilizing singular-
value decomposition to yield a least-squares solution

 Matrix Resultant Method (MRM): a linear-algebra-based approach that also utilizes
second-order relative orbit dynamics; constructed to find a trajectory that exactly fits three
line-of-sight measurements

 Nonhomogeneous Observer Method (NOM): utilizes linear relative orbit dynamics and
assumes that the observer does not lie on the reference orbit during all the measurement
times; processes any number of measurements, yielding a least-squares solution via matrix
pseudoinverse

These techniques require no knowledge of the observed object, other than the line-of-sight 
measurements to the object.  Unlike most classical initial orbit determination methods (and precise 
orbit determination methods for that matter), the IROD methods require no iteration or recursion; 
the only method requiring any “decision making” is MRM, which tends to yield multiple solutions 
that must be disambiguated.  In most cases, the disambiguation process is straightforward and can 
be implemented algorithmically. 

The IROD methods were tested in two categories of scenarios: ground-based observations of an 
RSO and close-proximity observations from a space-based observer to the RSO.  Results were not 
compared with other means of initial orbit determination, but rather with simulated “true” relative 
orbits.  In most of the cases displayed, the IROD solution compared well with the true relative 
orbit.  The performance of the methods seems to be sensitive to the following factors: 

 Knowledge of the observer’s location at each measurement time

 Spatial separation between the reference orbit and the observed object’s orbit: For NOM,
this should be as small as possible; for LMM and MRM, this should be large enough for
nonlinear effects to induce observability, but not so large that the second-order model does
not accurately represent the motion

 Temporal separation between the first and last measurement time: This should be long
enough that enough change in the motion occurs to induce observability, but not so long
that the dynamic model employed incurs significant propagation error

 Line-of-sight measurement error
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For the results displayed, the most common error exhibited by the solutions was a “scale factor” 
error, whereby the estimated orbit matches “truth” in terms of shape, phase, etc, but over- or under-
estimates the magnitude of the motion.  Based on the discussion early in the report, this is expected 
in close-proximity scenarios, where the motion is quasi-linear.  However, in many of the example 
scenarios it appears the scale factor is just as likely due to measurement error than quasi-linearity.  
A goal of future work is to better understand this correlation, as described below.  At any rate, the 
capability of these techniques to approximate scale factor fairly well is a significant step beyond 
how a method based solely on linear homogeneous dynamics (e.g. Clohessy-Wiltshire) would 
perform.  Any method of the latter variety has no means whatsoever to approximate scale factor, 
due to “Woffinden’s dilemma,” which leads to a solution consisting of an infinite family of 
trajectories rather than a specific one. 

For some categories of scenarios explored, not all three IROD methods were applicable, i.e. 
ground-based observation scenarios, only NOM could be used because the observer was on the 
ground and not in orbit.  For close-proximity scenarios where the observer maneuvered, only NOM 
was applied, whereas in close-proximity scenarios where the observer did not maneuver, only 
LMM and MRM were applied.  This illustrates a sensitivity factor additional to those listed above: 
degree of “observer non-homogeneity” in the scenario.  In other words, NOM requires non-
homogeneous observer motion in order to be successful, but LMM and MRM require 
homogeneous observer motion in order to be successful.  This implies that there may exist some 
threshold of “observer non-homogeneity” that serves as the minimum for NOM to be successful 
and simultaneously the maximum for LMM and MRM to be successful.  A goal of future work 
described below is to develop a hybrid of these methods that utilizes both the nonlinear effects 
required by LMM and MRM and the non-homogeneous effects required by NOM.  Such a method 
would likely perform well regardless of how much or little degree of “observer non-homogeneity” 
exists. 

This report demonstrates that with further development, all three IROD methods have potential to 
be effective initial orbit determination tools.  The fact that they do not require iteration or other 
“human in the loop” intervention makes them attractive candidates for autonomous operation, 
either on-board a spacecraft or on the ground in situations where time and resources for 
“inspection” of solutions is scarce.  In addition to these specialized scenarios, the methods may 
prove effective for more general use if they compare well to classical initial orbit determination 
techniques.  A future effort will be to survey all angles-only initial orbit determination techniques 
past and present, and characterize them in terms of such aspects as complexity, speed, accuracy, 
and robustness to error.  It will then be evaluated how well the three IROD methods compare to 
these existing methods in the above respects, using a variety of simulated and real test scenarios. 
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6 RECOMMENDATIONS 

Other planned future work includes: 

 Further testing in each of the above categories of scenarios, as well as other scenarios (e.g.
Low Earth Orbit (LEO) to Geosynchronous Orbit (GEO) scenarios, choosing an  Space-
based Space Surveillance (SBSS-like observer)

 Characterize the correlation between measurement error and scale factor in IROD solutions

 Develop a hybrid IROD technique that exploits both second-order relative orbit dynamics
and non-homogeneous observer motion

 Derive expressions for IROD solution covariance, based on measurement error covariance

 Test the viability of IROD solutions by injecting them into precise orbit determination
schemes (e.g. various strains of Kalman filters)

 Explore statistical initial orbit determination techniques (e.g. Constrained Admissible
Region) in order to (1) compare Monte Carlo runs of the IROD methods to a single
Constrained Admissible Region solution, and (2) possibly develop a relative motion-based
version of the Constrained Admissible Region philosophy

 Combine the IROD capability with an image processing capability (e.g. the software
package Geodetica) to directly convert images of space objects into orbit solutions
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 
  
Az/El Azimuth/elevation  
CIROD Close-Proximity IROD 
ECI Earth-Centered Inertial 
GEO Geosynchronous Orbit  
GIROD Ground-based IROD 
GPS Global Positioning System 
IOD Initial Orbit Determination 
IROD Initial Relative Orbit Determination 
LEO Low Earth Orbit  
LMM Linear Matrix Method 
LOS Line-of-sight  
LVLH Local-Vertical-Local-Horizontal 
MRM Matrix Resultant Method 
NOM Nonhomogeneous Observer Method 
PI Principal Investigators 
RA/Dec Right ascension/declination 
ROE Relative Orbit Element 
RMS Root Mean Square 
RSO Resident Space Object 
SBSS Space-based Space Surveillance 
SRP Solar Radiation Pressure 
TLE Two-line Element 
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